1. Introduction to Strings

In C language, a string is a sequence of characters stored in an array of characters and terminated by a
null character ('\0').

Unlike other languages, C does not have a built-in string data type. Strings are handled using
character arrays and string library functions.

Example

char name[] = "C Language";

2. Importance of Null Character ('\0')

The null character marks the end of a string.

Example

Without "\0', C cannot identify the end of the string, which may cause errors.

3. Declaration of Strings

3.1 Using Character Array

char str[20];

3.2 Initialization of Strings

Compile-Time Initialization

char str[] = "Hello";

Character-wise Initialization

char str[] = {'H','i',’\0'};

3.3 Run-Time Input

scanf("%s", str);

11 scanf() stops input at whitespace.

4. String Input and Output Functions

4.1 gets() and puts()

gets(str); // Not recommended (unsafe)
puts(str);

4.2 fgets() and puts()

fgets(str, 20, stdin);
puts(str);

Mfgets() is safer and recommended.

5. String Handling Functions

C provides many built-in string functions in <string.h>.

5.1 strlen()

Returns the length of string (excluding "\0").

int len = strlen(str);

5.2 strcpy()

Copies one string into another.

strcpy(dest, src);

5.3 strcat()

Concatenates two strings.

strcat(strl, str2);

5.4 strcemp()

Compares two strings.

stremp(strl, str2);

Returns:

e 0-equal
e <0 - stringl < string?2
e 0 — stringl > string2

5.5 strlwr() and strupr()

Convert string to lowercase or uppercase.

strlwr(str);
strupr(str);

6. String and Pointers

Strings can be accessed using character pointers.

Example
char *str = "Hello";

Pointer points to the base address of the string.

7. Array of Strings

An array of strings is a 2D character array.

Example

char names[3][20 "Ram", "Shyam", "Mohan"};

Access:

printf("%s", names[1]);

8. Passing Strings to Functions

Strings are passed as character arrays or pointers.

Example

void display(char str[])
{

printf("%s", str);

9. String Operations Using Loops

9.1 String Length Without strlen()
inti=0;

while(str[i] !="\0")

i++;

9.2 String Copy Without strcpy()
inti=0;
while(str2[i] = stri[i])

i++;

10. Searching in Strings

Example: Count Vowels
inti, count = 0;
for(i = 0; str[i] !="\0"; i++)
i
if(str[i]=="a'| str[i]=="¢'||str[i]==""| |str[i]=="0"| |str[i]=="u'
count++;

11. String Comparison Using Loop

inti=0;
while(strl[i] == str2[i])
{
if(str1[i] =="\0")
break;
i++;

12. Common String Programs

12.1 Reverse a String
inti, len;
len = strlen(str);

for(i=len-1;i>=0;i--)
printf("%c", str[i]);

12.2 Palindrome Check
// Compare original and reversed string

13. Difference Between Character Array and String

Feature Character Array String
Data Type char array char array + "\0'
Termination No Yes
Functions Not applicable Available

14. Advantages of Strings

Easy text manipulation
Used in input/output
Essential for file handling
Widely used in applications

15. Limitations of Strings in C

Fixed size

No built-in string type
Unsafe functions like gets()
Manual memory handling

16. Common Errors in Strings

Incorrect size declaration
Uninitialized strings

1. Missing null character
2. Buffer overflow

3. Using gets()

4.

5.

17. Best Practices

e Always use fgets() instead of gets()
e Allocate sufficient memory

e Use string functions carefully
o Validate input length

18. Applications of Strings

o Text editors

e File handling

e Command-line tools
e Web development

e Data processing

19. Interview / Exam Important Points

e Strings are character arrays

e Null character is mandatory

e <stringh> is required

e Strings are passed by reference

20. Conclusion

Strings are a fundamental part of C programming used for handling text data. Understanding string
declaration, manipulation, and functions is essential for writing effective and reliable C programs.

