
1. Introduction to Strings

In C language, a string is a sequence of characters stored in an array of characters and terminated by a
null character ('\0').

Unlike other languages, C does not have a built-in string data type. Strings are handled using
character arrays and string library functions.

Example
char name[] = "C Language";

2. Importance of Null Character ('\0')

The null character marks the end of a string.

Example
char str[] = {'H','E','L','L','O','\0'};

Without '\0', C cannot identify the end of the string, which may cause errors.

3. Declaration of Strings

3.1 Using Character Array
char str[20];

3.2 Initialization of Strings

Compile-Time Initialization
char str[] = "Hello";

Character-wise Initialization
char str[] = {'H','i','\0'};

3.3 Run-Time Input
scanf("%s", str);

 scanf() stops input at whitespace.

4. String Input and Output Functions

4.1 gets() and puts()
gets(str); // Not recommended (unsafe)
puts(str);

4.2 fgets() and puts()
fgets(str, 20, stdin);
puts(str);

✅ fgets() is safer and recommended.

5. String Handling Functions

C provides many built-in string functions in <string.h>.

5.1 strlen()

Returns the length of string (excluding '\0').

int len = strlen(str);

5.2 strcpy()

Copies one string into another.

strcpy(dest, src);

5.3 strcat()

Concatenates two strings.

strcat(str1, str2);

5.4 strcmp()

Compares two strings.

strcmp(str1, str2);

Returns:

 0 → equal
 <0 → string1 < string2
 0 → string1 > string2

5.5 strlwr() and strupr()

Convert string to lowercase or uppercase.

strlwr(str);
strupr(str);

6. String and Pointers

Strings can be accessed using character pointers.

Example
char *str = "Hello";
printf("%s", str);

Pointer points to the base address of the string.

7. Array of Strings

An array of strings is a 2D character array.

Example
char names[3][20] = {"Ram", "Shyam", "Mohan"};

Access:

printf("%s", names[1]);

8. Passing Strings to Functions

Strings are passed as character arrays or pointers.

Example
void display(char str[])
{
 printf("%s", str);
}

9. String Operations Using Loops

9.1 String Length Without strlen()
int i = 0;
while(str[i] != '\0')
 i++;

9.2 String Copy Without strcpy()
int i = 0;
while(str2[i] = str1[i])
 i++;

10. Searching in Strings

Example: Count Vowels
int i, count = 0;
for(i = 0; str[i] != '\0'; i++)
{
 if(str[i]=='a'||str[i]=='e'||str[i]=='i'||str[i]=='o'||str[i]=='u')
 count++;
}

11. String Comparison Using Loop
int i = 0;
while(str1[i] == str2[i])
{
 if(str1[i] == '\0')
 break;
 i++;
}

12. Common String Programs

12.1 Reverse a String
int i, len;
len = strlen(str);
for(i = len - 1; i >= 0; i--)
 printf("%c", str[i]);

12.2 Palindrome Check
// Compare original and reversed string

13. Difference Between Character Array and String
Feature Character Array String

Data Type char array char array + '\0'

Termination No Yes

Functions Not applicable Available

14. Advantages of Strings

 Easy text manipulation
 Used in input/output
 Essential for file handling
 Widely used in applications

15. Limitations of Strings in C

 Fixed size
 No built-in string type
 Unsafe functions like gets()
 Manual memory handling

16. Common Errors in Strings

1. Missing null character
2. Buffer overflow
3. Using gets()
4. Incorrect size declaration
5. Uninitialized strings

17. Best Practices

 Always use fgets() instead of gets()
 Allocate sufficient memory

 Use string functions carefully
 Validate input length

18. Applications of Strings

 Text editors
 File handling
 Command-line tools
 Web development
 Data processing

19. Interview / Exam Important Points

 Strings are character arrays
 Null character is mandatory
 <string.h> is required
 Strings are passed by reference

20. Conclusion

Strings are a fundamental part of C programming used for handling text data. Understanding string
declaration, manipulation, and functions is essential for writing effective and reliable C programs.

